VitiSynth Full Entry

Reference: Total and Hot-Water Extractable Organic Carbon and Nitrogen in Organic Soil Amendments- Their Prediction Using Portable Mid-Infrared Spectroscopy with Support Vector Machines
Key Statements


Against the background of climate change mitigation, organic amendments (OA) may contribute to store carbon (C) in soils, given that the OA provide a sufficient stability and resistance to degradation. In terms of the evaluation of OA behavior in soil, total organic carbon (TOC), total nitrogen (TN), and the ratio of TOC to TN (CN-ratio) are important basic indicators. Hot-water extractable carbon (hwC) and nitrogen (hwN) as well as their ratios to TOC and TN are appropriate to characterize a labile pool of organic matter. As for quickly determining these properties, mid-infrared spectroscopy (MIRS) in combination with calibrations based on machine learning methods are potentially capable of analyzing various OA attributes. Recently available portable devices (pMIRS) might replace established benchtop devices (bMIRS) as they have potential for on-site measurements that would facilitate the workflow. Here, we used non-linear support vector machines (SVM) to calibrate prediction models for a heterogeneous dataset of greenwaste composts and biochar compost substrates (BCS) (n = 45) using bMIRS and pMIRS instruments on ground samples. Calibrated models for both devices were validated on separate test sets and showed similar results. Ten OA were sieved to particle size classes (psc’s) of >4 mm, 2–4 mm, 0.5–2 mm, and <0.5 mm. A universal SVM model was then developed for all OA and psc’s (n = 162) via pMIRS. Validation revealed that the models provided reliable predictions for most parameters (R2 = 0.49–0.93; ratio of performance to interquartile distance (RPIQ) = 1.19–5.70). We conclude that (i) the examined parameters are sensitive towards chemical composition of OA as well as particle size distribution and can therefore be used as indicators for labile carbon and nitrogen pools of OA, (ii) prediction models based on SVM and pMIRS are a feasible approach to predict the examined C and N pools in organic amendments and their particle size class, and (iii) pMIRS can provide valuable information for optimized application of OA on cultivated soils at low costs and efforts.

(highlighting by VitiSynth)

Link to paper-

Partially indexed reference.

View Interactions

VitiSynth Review
Go Back


Due to the complex nature of Ercofid Pure-Liquid and its capability to act on several different wine faults simultaneously, wines can be treated much more precisely and the positive aromas remain unharmed

Publication Details

Published: 2021
Publication: Agronomy
Issue: 2021 11-4-659
Author: Wehrle R 2021


Related Video

None for this Entry

Related Audio

None for this Entry

Discuss this Entry

No related discussions available.

Join Discussion

Latest Discussions
Special Report

Date: 19th April 2020
Vine Synth:Growth stage:VS 4 Flowering:VS 4c Bud development:VS 4c.2 Differentiation of main axis of anlage into inflorescence rachis primordium or tendril primordium

The development of inflorescence primordia (IP) is clearly described i...Read more

Date: 16th February 2020
Admin Synth:Guides:Data standards:Colour codes

I think it would be very useful if we have standard colour codes for e...Read more

Date: 29th October 2015
Reference:Journal:Weed Technology:2015:Online October 2015:Devkota P 2015:Influence of Spray Solution Temperature and Holding Duration on Weed Control with Premixed Glyphosate and Dicamba Formulation

Pesticides in general are chemical products, therefore the quality of ...Read more

List of sponsors.. Read more