ADVANCED INTERACTION SEARCH

VitiSynth Full Entry

Reference: Robotics-based vineyard water potential monitoring at high resolution
Key Statements

Abstract-

The purpose of this research is deploying a proximal sensing solution using non-invasive and cost-effective sensors onboard an Autonomous Ground Vehicle (AGV) as a feasible way for building high-resolution maps of water potential in vineyards. The final objective is offering growers a practical system to make decisions about water management, especially for arid climatic conditions. The monitoring AGV was entirely developed within this research context, and as a result, it is a machine specifically designed to endure off-road conditions and harsh environments. The autonomous vehicle served as a massive, non-invasive, and on-the-go data collector robotic platform. The sensors used for measuring the relevant field variables were two spectral reflectance sensors (SRS), an infrared radiometer, and an on-board weather sensor. The collected data were displayed on comprehensible grid maps using the Local Tangent Plane (LTP) coordinate system. The proposed model has a coefficient of determination R2 of 0.69, and results from combining six parameters: the canopy and air temperatures (as the temperature difference), the relative humidity, the altitude difference, the Normalized Difference Vegetation Index (NDVI), and the Photochemical Reflectance Index (PRI). The strongest relationships found in this study were between the temperature difference and PRI, with an R2 of 0.75, and the temperature difference with the leaf water potential with an R2 of 0.61. The practical use of these high-resolution maps includes irrigation scheduling and harvest zoning for sorting grape quality, with a further use as inputs to complex artificial intelligence algorithms considering larger areas or complementing airborne data. Future improvements to make the models more robust and versatile will entail considering additional variables, locations, or grapevine cultivars, and even other crops grown in vertical trellis systems.

(highlighting by VitiSynth)

Link to paper-

https://www.sciencedirect.com/science/article/pii/S0168169921003288

https://doi.org/10.1016/j.compag.2021.106311


Partially indexed reference.

View Interactions

VitiSynth Review
Go Back

Vitisynth

Publication Details

Published: 2021
Publication: Computers and Electronics in Agriculture
Issue: 2021 187-106311
Author: Saiz Rubio V 2021
Recommendation:

NOT SET

Related Video

None for this Entry

Related Audio

None for this Entry

Discuss this Entry

No related discussions available.

Join Discussion

Latest Discussions
Special Report

Date: 19th April 2020
Vine Synth:Growth stage:VS 4 Flowering:VS 4c Bud development:VS 4c.2 Differentiation of main axis of anlage into inflorescence rachis primordium or tendril primordium

The development of inflorescence primordia (IP) is clearly described i...Read more

Date: 16th February 2020
Admin Synth:Guides:Data standards:Colour codes

I think it would be very useful if we have standard colour codes for e...Read more

Date: 29th October 2015
Reference:Journal:Weed Technology:2015:Online October 2015:Devkota P 2015:Influence of Spray Solution Temperature and Holding Duration on Weed Control with Premixed Glyphosate and Dicamba Formulation

Pesticides in general are chemical products, therefore the quality of ...Read more

List of sponsors.. Read more

test