ADVANCED INTERACTION SEARCH

VitiSynth Full Entry

Reference: Oxygen gas transfer through oak barrels- a macroscopic approach
Key Statements

Abstract-

The oak barrel maturation step is nowadays strongly rooted in the production of quality wines. Two main physico‑chemical phenomena contribute to the modification and improvement of wine: the solubilisation of volatile and non-volatile wood compounds concomitant with the dissolution of oxygen from the air into the wine. Indeed, wood is a porous material and gas transfer (especially oxygen transfer, expressed as oxygen transfer rate or OTR) through oak barrels, is an intrinsic parameter which ensures wine oxygen supply during maturation. Due to its oenological impact, it has been actively studied over recent decades using several approaches based on the same principle: the monitoring of oxygen in a model wine solution in the barrel. This project aimed at assaying barrel OTR by using a new tool based on the theoretical knowledge of gas transfer through porous materials. An oxygen concentration gradient was created on each side of a barrel kept in an airtight stainless-steel tank. The concentration of the oxygen in the atmosphere around the barrel was monitored in order to quantify oxygen transfer, thus the avoiding common drawbacks of interactions between dissolved oxygen ingress kinetics and the consumption of oxygen in the liquid phase by wood components. This study reports for the first time, the diffusion coefficient of entire oak barrels (Q. sessilis) to be between 10-10 and 10-9 m²/s, and it contributes to increasing knowledge on the complex phenomena driving oxygen ingress during the maturation of wine in barrels kept in cellar conditions. The results highlight the important role of wood moisture content in oxygen transfer, and provides a simple and reliable parameter to monitor it: the weight of the barrel. Following methodology developed by the authors, the OTR of a new oak barrel was found to be 11.4 mg/L per year. Taking into account the oxygen released through the wood pores, a new barrel will contribute 14.4 mg/L per year of oxygen to the wine, of which 46 % in the first three months of aging.

(highlighting by VitiSynth)

Link to paper-

https://oeno-one.eu/article/view/4692

https://doi.org/10.20870/oeno-one.2021.55.3.4692


Partially indexed reference.

View Interactions

VitiSynth Review
Go Back

Vitisynth

Publication Details

Published: 2021
Publication: Oeno One
Issue: 2021 55-3
Author: Junqua R 2021
Recommendation:

Brain food

Related Video

None for this Entry

Related Audio

None for this Entry

Discuss this Entry

No related discussions available.

Join Discussion

Latest Discussions
Special Report

Date: 19th April 2020
Vine Synth:Growth stage:VS 4 Flowering:VS 4c Bud development:VS 4c.2 Differentiation of main axis of anlage into inflorescence rachis primordium or tendril primordium

The development of inflorescence primordia (IP) is clearly described i...Read more

Date: 16th February 2020
Admin Synth:Guides:Data standards:Colour codes

I think it would be very useful if we have standard colour codes for e...Read more

Date: 29th October 2015
Reference:Journal:Weed Technology:2015:Online October 2015:Devkota P 2015:Influence of Spray Solution Temperature and Holding Duration on Weed Control with Premixed Glyphosate and Dicamba Formulation

Pesticides in general are chemical products, therefore the quality of ...Read more

List of sponsors.. Read more

test