Enter user name and password:


VitiSynth Full Entry

Reference: The impact of acetaldehyde on phenolic evolution of a free-SO2 red wine
Key Statements


AIMS: Some wine producers, in good years, can produce free-SO2 red wines and decide to add the minimum amount of sulphur dioxide only at bottling. To manage this addition, it is important to know the oxidative history of the wine. Acetaldehyde, the main wine oxidation product, is a powerful electrophile that reacts with numerous wine compounds giving desired products as the stable red polymeric pigments and the less astringent tannins but, also negative off-flavours. Although all these reactions are well known, the border between those increasing wine longevity and those decrementing wine quality is difficult to determine. This study has the aim to investigate the kinetics of consumption of acetaldehyde in red wines to give information useful for the further management of sulphur dioxide.

METHODS: Free-SO2 red wines were spiked with increasing levels of acetaldehyde (from 0 to 190 mg/L) and analysed over time. Chromatic properties and main phenolic classes were analysed by conventional spectrophotometric methods. Small phenolics, polymeric pigments (PP) and polymeric tannins (PT) were detected by HPLC, MS and NMR analysis.  Reactivity of tannins towards BSA and saliva was also determined (1-2-3).

RESULTS: Already two hours after the addition of acetaldehyde the 50% was consumed in reactions with phenolic compounds and the consumption increased over time. Also when a great excess of aldehyde was added (190 mg/L) and after one year of aging a loss of 75% of the initial value was detected.

The first compounds that were consumed in reactions with acetaldehyde were anthocyanins and flavanols and a contemporary increase of polymeric pigments and tannins occurred. BSA and saliva reactive tannins increased over time when high concentration of acetaldehyde were added.

CONCLUSIONS: For a correct management of sulphur dioxide when bottling a free-SO2 red wine the content of acetaldehyde and phenolic strong reactants (anthocyanins and flavanols) should be determined to limit or favour further acetaldehyde reactions.

Link to paper-


Partially indexed reference.

View Interactions

VitiSynth Review
Go Back


Publication Details

Published: 2021
Publication: Macrowine 2021
Issue: 2021 23-30 June 2021
Author: Coppola F 2021


Related Video

None for this Entry

Related Audio

None for this Entry

Discuss this Entry

No related discussions available.

Join Discussion

Latest Discussions
Special Report

Date: 19th April 2020
Synth:Growth stage:VS 4 Flowering:VS 4c Bud development:VS 4c.2 Differentiation of main axis of anlage into inflorescence rachis primordium or tendril primordium

The development of inflorescence primordia (IP) is clearly described i...Read more

Date: 16th February 2020
Synth:Guides:Data standards:Colour codes

I think it would be very useful if we have standard colour codes for e...Read more

Date: 29th October 2015
Reference:Journal:Weed Technology:2015:Online October 2015:Devkota P 2015:Influence of Spray Solution Temperature and Holding Duration on Weed Control with Premixed Glyphosate and Dicamba Formulation

Pesticides in general are chemical products, therefore the quality of ...Read more

List of sponsors.. Read more